

AIR POLLUTION ABATEMENT WITH INNOVATIVE PHOTOCATALYTIC COVERING TECHNIQUES

N. Moussiopoulos and Ph. Barmpas Aristotle University Thessaloniki

Contents

- □ Introduction
- Photocatalytic Innovative Coverings
- □ Assessment of the depollution potential by:
 - Numerical simulations
 - □ Field campaign studies
 - □ Wind tunnel experiments
- Practical application examples

Introduction

- In urban areas the levels of gaseous pollutants are relatively high due to increased emissions.
- The problem is particularly intense especially in urban hotspots like street canyons.
- Pollution has a negative effect on human health and results in the aesthetic degradation of the urban environment.

ΚΑΤΑΝΟΜΗ ΡΥΠΑΝΣΗΣ ΥΠΟ ΤΗΝ ΕΠΙΔΡΑΣΗ ΤΟΥ ΑΝΕΜΟΥ

Depollution

The addition of TiO₂ into the façade coverings results into increased pollutant absorption:

NO_x
VOC's
PM
O₃

Desoiling

- The surface will keep clean from urban classical soiling factors
 - Bacteria
 - □ Algae
 - Organic compounds

Photocatalytic Innovative Coverings (3/4)

PICADA led to 3 different products: a mortar, a cementitious coating and a translucent coating.

Experimental application of the products:

Conclusion regarding the correct method of application.

Quality assurance plan.

Photocatalytic Innovative Coverings (4/4)

Our contributions to PICADA

The Laboratory of Heat Transfer and Environmental Engineering was responsible for assessing the depollution potential of the PICADA products via:

- The participation in international coordinated experimental activities including
 - >in situ measurements in field campaigns and
 - Isoratory activities (physical modelling with the use of wind tunnel measurements).
- □ Numerical simulations with the CFD code MIMO.

Numerical simulations

Guerville experimental field campaign (1/2)

Guerville experimental field campaign (2/2)

The photocatalytic surface is an effective "trap" for air pollutants.
 The use of the specific sample led to a pollution reduction by 50-60 %.

Numerical simulation results agree very well with the experimental measurements

Wind tunnel campaign (1/2) Field site model (scale 1/50)

Side 1

Horizontal plane, Z = 0.5H

Wind tunnel campaign (2/2)

Conclusions

WD 90°: Pollution accumulated at the mid cross section; at even small deviations from WD 90°, flushing via one canyon side is enforced.

- Concentrations highest at the low levels.
- □ For WD 90°, street canyon ventilated mainly via the roof top.
- The wind tunnel measurements prove the validity of the numerical model results.

Application examples (1/2) Sir John Cass Primary School, London

Application examples (1/2)

Sir John Cass School, London

